Chimie Inorganique Moléculaire

chimie des complexes des métaux de transition

Le complexe de coordination C0-C1

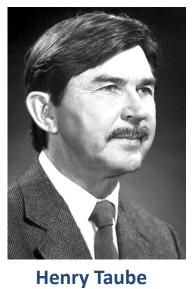
définitions; stéréochimie; notions sur la stabilité des complexes

L'interaction Métal-Ligand — Influence sur les propriétés C2

nature la liaison; effet de la coordination sur les propriétés

Réactivité des complexes C3-C4-C5

Substitution de ligands; Réactions organométalliques; Transfert d'électrons;


« cours inversé »

infos pratiques:

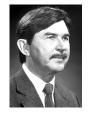
Cours 5. Réactions de transfert d'électron (TE)

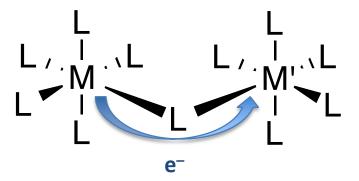
- 1. Transfert d'électron par sphère interne
- 2. Transfert d'électron par sphère externe
- 3. Théorie de Marcus

Prix Nobel, 1983

"for his work on the mechanisms of electron transfer reactions, especially in metal complexes"

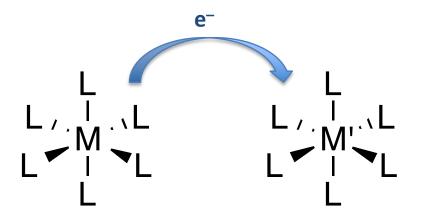
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1983/taube-facts.html


Rudolph Marcus


Prix Nobel, 1992

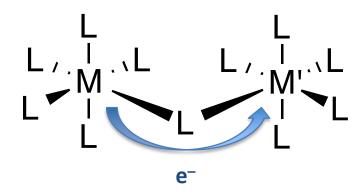
"for his contributions to the theory of electron transfer reactions in chemical systems"

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1992/marcus-facts.html


Deux Mécanismes

Sphère interne

Le transfert d'électron entre les ions métalliques se fait à travers un ligand pont.



Sphère externe

Le transfert d'électron se fait sans liaison chimique entre les réactifs.

Cours 4. Réactions de transfert d'électron (TE)

- ⇒ 1. Transfert d'électron par sphère interne
 - 2. Transfert d'électron par sphère externe
 - 3. Théorie de Marcus

Transfert par sphère interne: 1 ere expérience de Taube

$$[Co^{|||}(NH_3)_{\mathbf{5}}\mathbf{CI}]^{2+} + [Cr^{||}(H_2O)_6]^{2+} \longrightarrow [Co^{||}(NH_3)_5(H_2O)]^{2+} + [Cr^{|||}(H_2O)_{\mathbf{5}}\mathbf{CI}]^{2+}$$

$$--- e_g^*$$

$$++++ t_{2g}$$

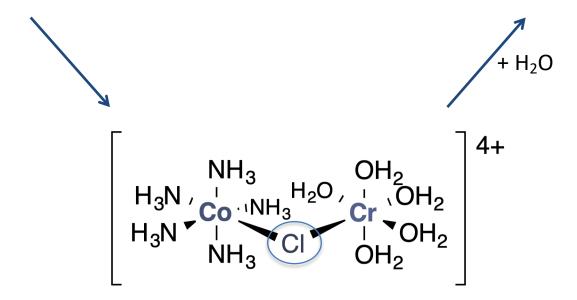
$$++++ t_{2g}$$

$$d^6 \text{ bas spin inerte}$$

$$d^4 \text{ haut spin labile}$$

$$d^7 \text{ haut spin labile}$$

$$d^3 \text{ inerte}$$


à vous

un TE en sphère interne permet-il de justifier les observations suivantes ?

l'ajout de Cl-* marqués en solution ne conduit a pas à des $[Cr^{\parallel}(H_2O)_5Cl^*]^{2+}$ mai l'utilisation de $[Co^{\parallel}(NH_3)_6]^{3+}$ conduit à des TE très lents

Transfert par sphère interne: 1 ere expérience de Taube

$$[Co^{\parallel}(NH_3)_5CI]^{2+} + [Cr^{\parallel}(H_2O)_6]^{2+} \longrightarrow [Co^{\parallel}(NH_3)_5(H_2O)]^{2+} + [Cr^{\parallel}(H_2O)_5CI]^{2+}$$

il faut au moins un complexe labile et un ligand pont!

Etapes du transfert d'électron par sphère interne

1° ASSOCIATION

$$[\mathbf{Co^{III}}(NH_3)_5CI]^{2+} + [\mathbf{Cr^{II}}(H_2O)_6]^{2+} \xrightarrow{k_1} [\mathbf{Co^{III}}(NH_3)_5(\mu\text{-}CI)\mathbf{Cr^{II}}(H_2O)_5]^{4+} + H_2O$$

2° TRANSFERT D'ÉLECTRON

$$[\text{Co}^{\parallel}(\text{NH}_3)_5(\mu\text{-Cl})\text{Cr}^{\parallel}(\text{H}_2\text{O})_5]^{4+}$$
 k_{-2}
 $[\text{Co}^{\parallel}(\text{NH}_3)_5(\mu\text{-Cl})\text{Cr}^{\parallel}(\text{H}_2\text{O})_5]^{4+}$

3° DISSOCIATION

$$H_2O + [Co^{II}(NH_3)_5(\mu-CI)Cr^{III}(H_2O)_5]^{4+} \xrightarrow{k_3} [Co^{II}(NH_3)_5(H_2O)]^{2+} + [Cr^{III}(H_2O)_5CI]^{2+}$$

Etapes du transfert d'électron par sphère interne

ASSOCIATION

$$[\mathbf{Co^{III}}(\mathrm{NH_3})_5\mathrm{CI}]^{2+} + [\mathbf{Cr^{II}}(\mathrm{H_2O})_6]^{2+} \xrightarrow{k_1} [\mathbf{Co^{III}}(\mathrm{NH_3})_5(\mu\text{-CI})\mathbf{Cr^{II}}(\mathrm{H_2O})_5]^{4+} + \mathrm{H_2O}$$

étape cinétiquement limitante dans ce cas

TRANSFERT D'ÉLECTRON

$$[\text{Co}^{\text{III}}(\text{NH}_3)_5(\mu\text{-CI})\text{Cr}^{\text{III}}(\text{H}_2\text{O})_5]^{4+}$$
 k_{-2}
 $[\text{Co}^{\text{III}}(\text{NH}_3)_5(\mu\text{-CI})\text{Cr}^{\text{III}}(\text{H}_2\text{O})_5]^{4+}$

3° DISSOCIATION

$$H_2O + [Co^{II}(NH_3)_5(\mu-CI)Cr^{III}(H_2O)_5]^{4+} \xrightarrow{k_3} [Co^{II}(NH_3)_5(H_2O)]^{2+} + [Cr^{III}(H_2O)_5CI]^{2+}$$

Etapes du transfert d'électron par sphère interne

ASSOCIATION

$$[\mathbf{Co^{III}}(NH_3)_5CI]^{2+} + [\mathbf{V^{II}}(H_2O)_6]^{2+} \qquad \underbrace{k_1}_{k_{-1}} \qquad [\mathbf{Co^{III}}(NH_3)_5(\mu\text{-CI})\mathbf{V^{II}}(H_2O)_5]^{4+} + H_2O$$

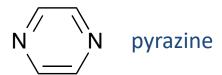
étape cinétiquement limitante dans ce cas

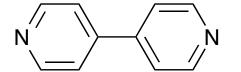
TRANSFERT D'ÉLECTRON

$$[\text{Co}^{\text{III}}(\text{NH}_3)_5(\mu\text{-CI})\text{V}^{\text{II}}(\text{H}_2\text{O})_5]^{4+}$$
 k_{-2}
 $[\text{Co}^{\text{III}}(\text{NH}_3)_5(\mu\text{-CI})\text{V}^{\text{III}}(\text{H}_2\text{O})_5]^{4+}$

3° DISSOCIATION

$$H_2O + [Co^{II}(NH_3)_5(\mu-CI)V^{III}(H_2O)_5]^{4+}$$
 $k_3 \longrightarrow [Co^{II}(NH_3)_5(H_2O)]^{2+} + [V^{III}(H_2O)_5CI]^{2+}$
 k_{-3}


halogénures: F-, Cl-, Br-, I-


sulfato: SO_4^{2-}

oxo: O²⁻ hydroxo: OH⁻

cyano $C \equiv N^{\bigcirc}$

thiocyanato \bigcirc N=C=S

4,4'-bipyridine

Ligands ponts usuels pour

les réactions de TE

par sphère interne

Influence du ligand pont sur le transfert électronique

$$[Co^{\parallel}(NH_3)_{\mathbf{5}}\mathbf{X}]^{2+} + [Cr^{\parallel}(H_2O)_6]^{2+} \longrightarrow [Co^{\parallel}(NH_3)_5(H_2O)]^{2+} + [Cr^{\parallel}(H_2O)_{\mathbf{5}}\mathbf{X}]^{2+}$$


(NB: ici étape cinétiquement déterminante: TE)

complexe	k	TE par sphère externe
[Co (NH ₃) ₆] ³⁺	8,9 10-5	beaucoup plus lent
$[Co^{\parallel}(NH_3)_5(H_2O)]^{3+}$	1 10-1	fonction du pH: OH- ligand pont
$[Co^{ }(NH_3)_5(OH)]^{2+}$	1,5 106	T .
$[Co^{\parallel}(NH_3)_5(NO_3)]^{2+}$	9 101	
$[Co^{ }(NH_3)_5(F)]^{2+}$	2,5 10 ⁵	ajustement orbitalaire &
$[Co^{ }(NH_3)_5(CI)]^{2+}$	6,0 10 ⁵	aptitude de X- à agir comme pont
$[Co^{ }(NH_3)_5(Br)]^{2+}$	1,4 106	J
$[Co^{ }(NH_3)_5(I)]^{2+}$	3,0 106	

Cours 4.

Réactions de transfert d'électron (TE)

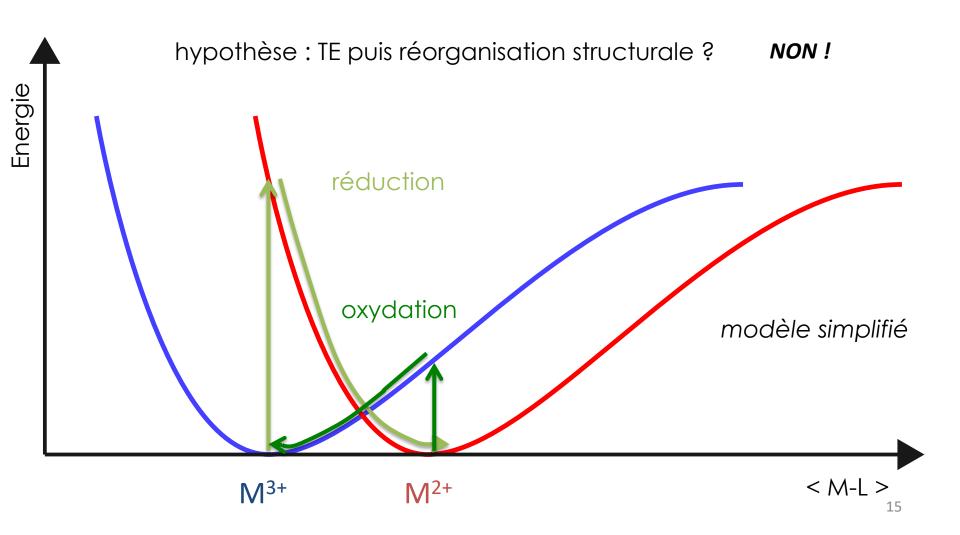
- 1. Transfert d'électron par sphère interne
- ⇒ 2. Transfert d'électron par sphère externe
 - 3. Théorie de Marcus

Sphère externe

Le transfert d'électron se fait sans liaison chimique entre les réactifs.

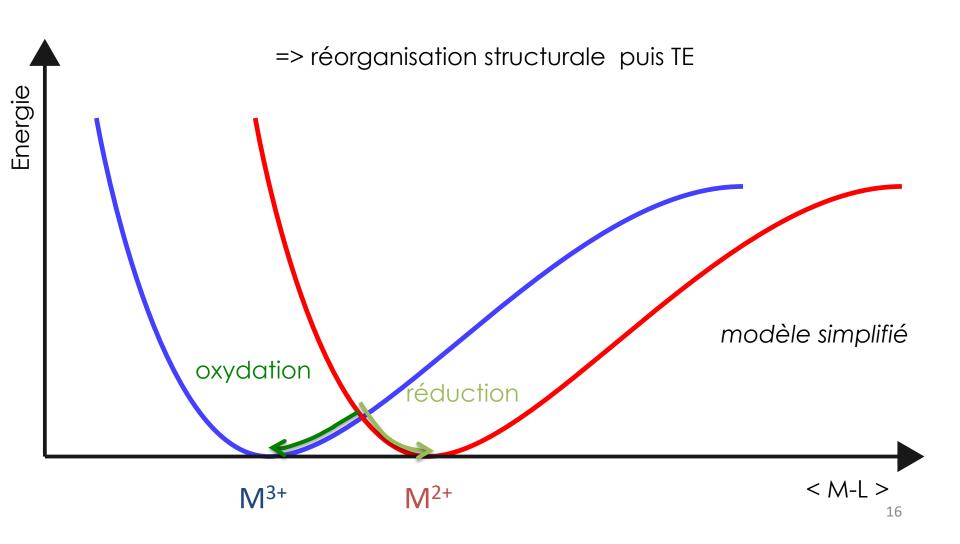
Etude des réactions d'auto-échange

transfert électronique sans réaction chimique : $\Delta G = 0$

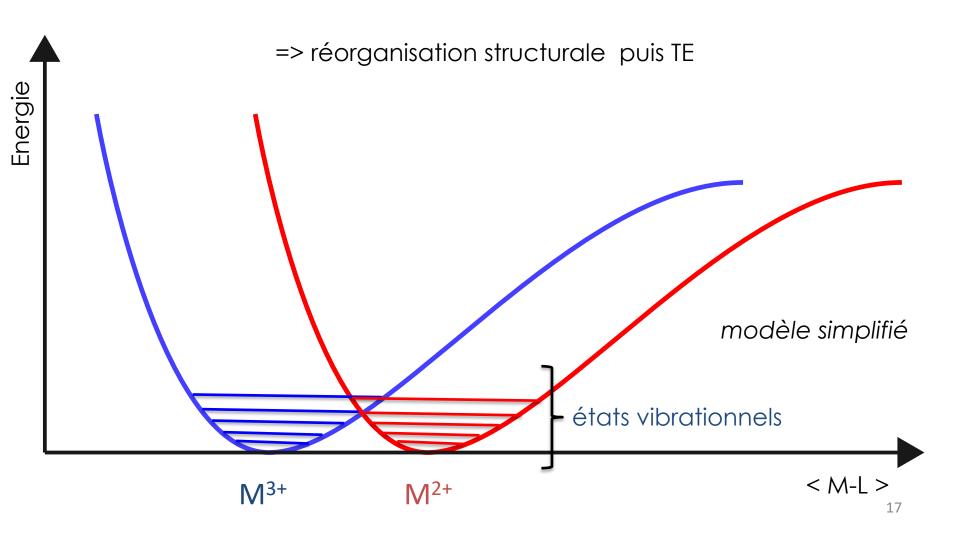

	Reaction	$k/\mathrm{dm}^3\mathrm{mol}^{-1}\mathrm{s}^{-1}$
No net chemical reacti (self-exchange)	$[Fe(bpy)_3]^{2+} + [Fe(bpy)_3]^{3+} \longrightarrow [Fe(bpy)_3]^{3+} + [Fe(bpy)_3]^{2+}$	$> 10^6$
	$[Os(bpy)_3]^{2+} + [Os(bpy)_3]^{3+} \longrightarrow [Os(bpy)_3]^{3+} + [Os(bpy)_3]^{2+}$	>10 ⁶
	$[Co(phen)_3]^{2+} + [Co(phen)_3]^{3+} \longrightarrow [Co(phen)_3]^{3+} + [Co(phen)_3]^{2+}$	40
	$[Fe(OH_2)_6]^{2+} + [Fe(OH_2)_6]^{3+} \longrightarrow [Fe(OH_2)_6]^{3+} + [Fe(OH_2)_6]^{2+}$	3
	$[Co(en)_3]^{2+} + [Co(en)_3]^{3+} \longrightarrow [Co(en)_3]^{3+} + [Co(en)_3]^{2+}$	10^{-4}
	$[Co(NH_3)_6]^{2+} + [Co(NH_3)_6]^{3+} \longrightarrow [Co(NH_3)_6]^{3+} + [Co(NH_3)_6]^{2+}$	10^{-6}
	NB: TE sphère externe = cinétique de réaction d'ordre 2	<u> </u>

quel paramètre influe sur E_A ?

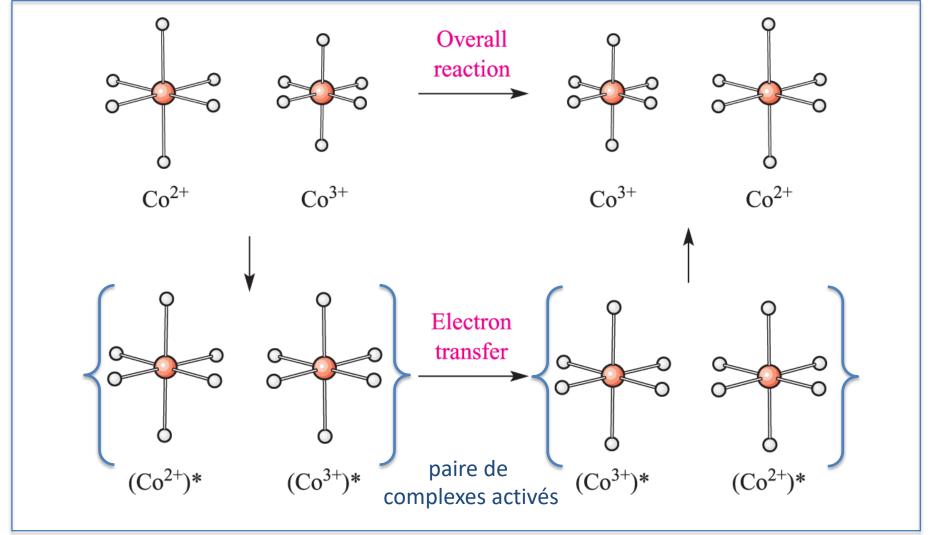
k fonction de la barrière d'énergie d'activation E_A => E_A très variables


Principe de Franck-Condon

Les transitions électroniques sont beaucoup plus rapides que les mouvements interatomiques (variation des distances M-L).


Principe de Franck-Condon

Le transfert d'électron ne peut avoir lieu que lorsque les distances M–L sont identiques !



Principe de Franck-Condon

Le transfert d'électron ne peut avoir lieu que lorsque les distances M–L sont identiques !

vision microscopique du TE

Housecroft & Sharpe, Inorganic Chemistry, 4th Ed © Pearson, p. 995

- 1. formation de paire de complexes activés (même distance M-L)
- 2. Transfert d'électron
- 3. relaxation/séparation

Moins la réorganisation structurale est grande, moins la barrière d'activation $\boldsymbol{E_A}$ est grande plus la réaction est rapide

	d _{M-L} [pm]	spin	L.mol ⁻¹ .s ⁻¹
[Fe(bipy) ₃] ²⁺	197	bas spin	106
[Fe(bipy) ₃] ³⁺	196	bas spin	
[Ru(NH ₃) ₆] ²⁺	214	bas spin	104
[Ru(NH ₃) ₆] ³⁺	210	bas spin	
[Co(NH ₃) ₆] ²⁺	211	haut spin	10-6
[Co(NH ₃) ₆] ³⁺	196	bas spin	

Facteurs influençant les TE par sphère externe

⇒ réorganisations structurales

4d et 5d = réactions en général plus rapides (pour les 3d, Δr_{ML} plus grand si variation d'état de spin,...)

⇒ formation de paires de complexes

rôle de la charge des complexes = répulsion ou attraction électronique

 \Rightarrow ligands


système π * de phen = relais pour le TE

	Reaction Housecroft &. Sharpe, Inorganic Chemistry, 4th ed © Pearson	$k/\mathrm{dm}^3\mathrm{mol}^{-1}\mathrm{s}^{-1}$
No net chemical reaction (self-exchange)	$[Fe(bpy)_3]^{2+} + [Fe(bpy)_3]^{3+} \longrightarrow [Fe(bpy)_3]^{3+} + [Fe(bpy)_3]^{2+}$	$> 10^6$
	$[Os(bpy)_3]^{2+} + [Os(bpy)_3]^{3+} \longrightarrow [Os(bpy)_3]^{3+} + [Os(bpy)_3]^{2+}$	>10 ⁶
	$[Co(phen)_3]^{2+} + [Co(phen)_3]^{3+} \longrightarrow [Co(phen)_3]^{3+} + [Co(phen)_3]^{2+}$	40
	$[Fe(OH_2)_6]^{2+} + [Fe(OH_2)_6]^{3+} \longrightarrow [Fe(OH_2)_6]^{3+} + [Fe(OH_2)_6]^{2+}$	3
	$[Co(en)_3]^{2+} + [Co(en)_3]^{3+} \longrightarrow [Co(en)_3]^{3+} + [Co(en)_3]^{2+}$	10^{-4}
	$[Co(NH_3)_6]^{2+} + [Co(NH_3)_6]^{3+} \longrightarrow [Co(NH_3)_6]^{3+} + [Co(NH_3)_6]^{2+}$	10^{-6}
Net chemical reaction	$[Os(bpy)_3]^{2+} + [Mo(CN)_8]^{3-} \longrightarrow [Os(bpy)_3]^{3+} + [Mo(CN)_8]^{4-}$	2×10^9
	$[Fe(CN)_6]^{4-} + [Fe(phen)_3]^{3+} \longrightarrow [Fe(CN)_6]^{3-} + [Fe(phen)_3]^{2+}$	10^{8}
	$[Fe(CN)_6]^{4-} + [IrCl_6]^{2-} \longrightarrow [Fe(CN)_6]^{3-} + [IrCl_6]^{3-}$	4×10^5

Cours 4.

Réactions de transfert d'électron (TE)

- 1. Transfert d'électron par sphère interne
- 2. Transfert d'électron par sphère externe
- ⇒ 3. Théorie de Marcus

Sphère externe

Le transfert d'électron se fait sans liaison chimique entre les réactifs.

Loi de Marcus

vitesse du TE dans la réaction par sphère externe

Loi de Marcus :
$$k_{12} = \sqrt{k_{11}k_{22}K_{12}f_{12}}$$
 (lien entre k_{12} et K_{12})

1G:

Auto-échange 1
$$[ML_6]^{2+} + [ML_6]^{3+} \xrightarrow{k_{11}} [ML_6]^{3+} + [ML_6]^{2+}$$

Auto-échange 2
$$[\mathbf{M'}L_6]^{2+} + [\mathbf{M'}L_6]^{3+} \xrightarrow{k_{22}} [\mathbf{M'}L_6]^{3+} + [\mathbf{M'}L_6]^{2+}$$
 0

Réaction croisée
$$[ML_6]^{2+} + [M'L_6]^{3+} \xrightarrow{k_{12}} [ML_6]^{3+} + [M'L_6]^{2+} -RT \ln K_{12} = -nF \Delta E$$

intérêt? permet de confirmer la nature du TE (sphère interne ou sphère externe)

$$\log f_{12} = \frac{\left(\log K_{12}\right)^2}{4\log\left(\frac{k_{11}k_{22}}{Z^2}\right)} \qquad f_{12} \approx 1$$

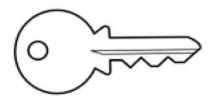
Z : fréquence de collision

Calculer la valeur théorique attendue. Est-elle en accord avec un TE par sphère externe ?

$$[\text{Co(bipy)}_3]^{2+} + [\text{Co*(bipy)}_3]^{3+} \xrightarrow{k_{11}} [\text{Co(bipy)}_3]^{2+} + [\text{Co*(bipy)}_3]^{3+}$$

$$[\text{Co(terpy)}_2]^{2+} + [\text{Co*(terpy)}_2]^{3+} \xrightarrow{k_{22}} [\text{Co(terpy)}_2]^{2+} + [\text{Co*(terpy)}_2]^{3+}$$

$$[\text{Co(terpy)}_2]^{2+} + [\text{Co(bipy)}_3]^{3+} \xrightarrow{k_{12}} [\text{Co(terpy)}_2]^{3+} + [\text{Co(bipy)}_3]^{2+}$$


$$k_{11} = 9,0 \text{ L·mol}^{-1} \cdot \text{s}^{-1}$$

$$k_{22} = 48 \text{ L·mol}^{-1} \cdot \text{s}^{-1}$$

$$k_{12} \approx \sqrt{k_{11}k_{22}K_{12}}$$

$$k_{12}(\text{exp.}) = 64 \text{ L·mol}^{-1} \cdot \text{s}^{-1}$$

⇒ application atelier exo 4

Est ce que je sais ...?

- Identifier et expliquer les mécanismes de transfert d'électron
 - à sphère interne
 - à sphère externe
- Comprendre la théorie de Marcus
 - Principes
 - Applications
- Evaluer les facteurs déterminant les vitesses de réaction